
Zyfi Permissionless multi-
signer paymaster
Security Review

Cantina Managed review by:
Deadrosesxyz, Lead Security Researcher
Chris Smith, Security Researcher

August 7, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 High Risk . 43.1.1 Attacker might repeatedly use selfRevokeSigner to steal gas refunds 43.2 Low Risk . 43.2.1 Signature Replay risk up to expirationTime and maxNonce 43.3 Informational . 53.3.1 Solidity variable naming best practices are not followed 53.3.2 Consistent use of uint256 vs uint . 53.3.3 Consistent conditional logic will make updateRefund easier to reason about 53.3.4 Floating pragma used . 5

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Zyfi is a Paymaster-as-a-Service that focuses on flexibility and ease of integration. It was created as a wayto accelerate the adoption of paymasters in the zkSync ecosystem.
From Jun 27th to Jul 2nd the Cantina team conducted a review of permissionless-multisigner-paymasteron commit hash 29943aba and a change review by Deadrosesxyz on Aug 2nd on commit hash 86d0a6b1.The team identified a total of 6 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 1
• Medium Risk: 0
• Low Risk: 1
• Gas Optimizations: 0
• Informational: 4

3

https://github.com/ondefy/permissionless-multisigner-paymaster
https://github.com/ondefy/permissionless-multisigner-paymaster/tree/0d60f07409d1c6fcc3a6fe04298de45651afc866
https://github.com/ondefy/permissionless-multisigner-paymaster/commits/86d0a6b1a3b12d5839766b91b66ff2fd733b0977

3 Findings

3.1 High Risk
3.1.1 Attacker might repeatedly use selfRevokeSigner to steal gas refunds

Severity: High Risk
Context: PermissionlessPaymaster.sol#L377
Description: Currently, the selfRevokeSigner sets previousManager to the signer's currently setmanager.
function selfRevokeSigner() public {

previousManager = managers[msg.sender];

managers[msg.sender] = address(0);

emit SignerRevoked(previousManager, msg.sender);

}

In case updateRefund hasn't been called since the last refund, this would lead to distributing the refundto the just revoked manager (instead of the actual previousManager).
An attacker can utilize this and back-run all transactions that utilize the Paymaster and ultimately steal allgas refunds.
Recommendation: Do not change previousManager within selfRevokeSigner.
Zyfi: Fixed in PR 1.
Cantina Managed: Fix looks good. previousManager is no longer changed within selfRevokeSigner.
3.2 Low Risk
3.2.1 Signature Replay risk up to expirationTime and maxNonce

Severity: Low Risk
Context: PermissionlessPaymaster.sol#L306-L317
Description: Signers need to ensure maxNonce and expirationTime are set and signed with appropri-ate values. If maxNonce is set high, then any user would be able reuse a signature from a signer to getthe manager to pay for multiple transactions as long as the transaction data are the same (_from, _to,
_maxFeePerGas, _gasLimit, _markupPercent) and the signature has not expired (block.timestamp >= _ex-

pirationTime). Due to the flexibility of maxNonce, the difference between the user's current nonce and the
maxNonce should be viewed by signers and managers as the maximum number of times the manager iswilling to pay for that transaction.
Recommendation: As has been discussed here and in the previous Zyfi paymaster audit, this is an inten-tional design trade-off. In order to provide flexibility to Dapps and users and to avoid the additional gascost of an internal nonce system that would completely eliminate signature replay issues, there is someaccepted risk.
The appropriate mitigation in this case is for signers to always use short expirationTimes and as lowas possible maxNonce values. Managers should track and quickly respond if they identify signers usingunacceptable maxNonce and expirationTime values as there is a chance funds could be drained. This willlimit their exposure to one signature being used as authorization to pay for multiple transactions.
Zyfi: We acknowledge this design trade off. We wanted to provide as much as flexibility to Dapps. It isexpected that signers would ensure this before signing. We will be collecting feedback from communityand deploy a newer version of paymaster with no flexibility on nonce either by replacing maxNonce checkto currentNonce or maintain internal nonce system if requested by the ecosystem.
Cantina Managed: This makes perfect sense. One additional note is to ensure that this design decisionis well documented for Dapps.

4

https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L377
https://github.com/ondefy/permissionless-multisigner-paymaster/pull/1
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L306-L317

3.3 Informational
3.3.1 Solidity variable naming best practices are not followed

Severity: Informational
Context: PermissionlessPaymaster.sol#L58
Description: Although, the variable ZYFI_TREASURY is not a constant, it is written in upper case. It is aSolidity best practice to only use upper case for variable naming when dealing with constants.
address public ZYFI_TREASURY;

Recommendation: Change the variable's name to zyfi_treasury.
Zyfi: Fixed in PR 2.
Cantina Managed: Fixed.
3.3.2 Consistent use of uint256 vs uint

Severity: Informational
Context: Global scope
Description: In several places, the code uses uint as opposed to uint256 [1, 2, 3, etc..]. While uint is analias of uint256, it would be better to have it consistent across the code. Additionally, mixing uses wereto apply to function signature encoding it could result in a bug (This is not the case currently, so this is aninformation/best practice note).
Recommendation: Update uint uses to uint256 for consistency.
Zyfi: Fixed in PR 4.
Cantina Managed: Fix looks good, appears to cover all instances of uint.
3.3.3 Consistent conditional logic will make updateRefund easier to reason about

Severity: Informational
Context: PermissionlessPaymaster.sol#L58
Description: Reversing the conditionals in updateRefundmakes the logic harder to reason about.
Recommendation: Have both if statements rely on !withdraw so there is less potential for confusion.
Zyfi: For better readability, fix in PR 3. Making it isDeposit would cost 5 additional gas and increase thecomplexity of the change, hence we decided to move forward with the current design.
CantinaManaged: Fix looks good and agree on the keeping it !isWithdraw over isDeposit for lastminutechange and gas reasons.
3.3.4 Floating pragma used

Severity: Informational
Context: PermissionlessPaymaster.sol#L24
Description: Currently, the contract uses a floating pragma, allowing the contract to be compiled withany 0.8.x Solidity version higher than 0.8.18.
It is a security best practice to set the pragma to a specific version, in order to make sure the contract isnot accidentally compiled to a version which breaks the contract's operability.
Recommendation: Set the pragma to a specific version.
Zyfi: Fixed in PR 7.
Cantina Managed: Fixed.

5

https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L58
https://github.com/ondefy/permissionless-multisigner-paymaster/pull/2
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L191-L197
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L247
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L454
https://github.com/ondefy/permissionless-multisigner-paymaster/pull/4
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L144
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/0d60f07409d1c6fcc3a6fe04298de45651afc866/contracts/paymasters/PermissionlessPaymaster.sol#L144
https://github.com/ondefy/permissionless-multisigner-paymaster/pull/3
https://github.com/ondefy/permissionless-multisigner-paymaster/blob/86d0a6b1a3b12d5839766b91b66ff2fd733b0977/contracts/paymasters/PermissionlessPaymaster.sol#L24
https://github.com/ondefy/permissionless-multisigner-paymaster/pull/7

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Attacker might repeatedly use selfRevokeSigner to steal gas refunds

	Low Risk
	Signature Replay risk up to expirationTime and maxNonce

	Informational
	Solidity variable naming best practices are not followed
	Consistent use of uint256 vs uint
	Consistent conditional logic will make updateRefund easier to reason about
	Floating pragma used

